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Abstract

The 5-HT7 receptor is targeted by several new antipsychotics such as clozapine and risperidone. We studied the effect of R-(+)-1-(toluene-

3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine (SB-258741), a specific 5-HT7 receptor antagonist, in three models for positive

symptoms, D-amphetamine-induced hyperactivity and D-amphetamine- and phencyclidine (PCP)-disrupted prepulse inhibition (PPI) in rats,

with the aim of investigating the role of this receptor in the clinical effect of antipsychotics. We also tested this compound in a model for

negative symptoms, PCP-disrupted social interaction (SIT) in rats. Induction of side effects by this compound was evaluated by testing its

potency to reduce spontaneous motility and to induce catalepsy in rats. The effect of SB-258741 was compared to risperidone in all models.

This study showed that SB-258741 had no beneficial effect on PCP-disrupted SIT. SB-258741 did not reverse D-amphetamine-disrupted PPI;

however, it dose-dependently normalised PCP-disrupted PPI. SB-258741 antagonised D-amphetamine-induced hyperactivity but reduced

motility of rats at similar doses. Thus, this specific 5-HT7 receptor antagonist brought a clear positive outcome in only one model for positive

symptoms of schizophrenia and had no beneficial effect in the model for negative symptoms. Consequently, it is clear that SB-258741 affects

the PPI phenomenon but is not expected to have an antipsychotic effect on its own in clinic. D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The 5-HT7 receptor is targeted by several antipsychotics

of second generation such as clozapine, risperidone, and

zotepine, and with lower affinity, by olanzapine and sertin-

dole (Arnt and Skarsfeldt, 1998; Eglen et al., 1997; Roth

et al., 1994; Terrón and Falcón-Neri, 1999). In in vitro

assays, clozapine also up-regulates the expression of the

5-HT7 receptor (Zhukovskaya and Neumaier, 2000). The

localisation of the 5-HT7 receptor at the level of limbic

structures (Branchek et al., 1995; Doyland et al., 1995;

Hagan et al., 2000; Le Corre et al., 1997; Thomas et al.,

1999; To et al., 1995) also suggests a possible role for

treatment of schizophrenia. However, the role per se of this

receptor in the clinical action of antipsychotics is still

unknown. Various in vivo studies have been conducted in

order to define the role of this receptor, and sometimes with

nonspecific compounds (Meneses and Terrón, 2001). This

receptor has been suggested to be of interest for treatment of

cognitive dysfunction (Meneses and Terrón, 2001), depres-

sion (Yau et al., 1997; Schwartz, 1993; Sleight et al., 1995),

and sleep disorders (Schwartz, 1993; Tsou et al., 1994) by

regulation of circadian rhythms (Lena Mullins et al., 1999;

Lovenberg et al., 1993). However, no preclinical studies

described its role in animal models related to schizophrenia.

This lack of knowledge is basically due to a lack of

potent and specific 5-HT7 ligands. Recently, 5-HT7 receptor

antagonists have been developed (Forbes et al., 1998;

Hagan et al., 2000; Lovell et al., 2000), R-(+)-1-(toluene-

3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine

(SB-258741) being one of the most specific (see compound

‘‘13’’ in Lovell et al., 2000).

In order to clarify the potential role of a 5-HT7 receptor

antagonist for the treatment of schizophrenia, we studied the

effect of SB-258741 in three models related to positive

symptoms of schizophrenia, D-amphetamine-induced hyper-

activity and D-amphetamine- and phencyclidine (PCP)-dis-

rupted prepulse inhibition (PPI) in rats. We also tested this

compound in a putative model for negative symptoms, PCP-

disrupted social interaction (SIT) in rats. Induction of motor
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side effects by this compound was evaluated by testing its

potency to reduce spontaneous motility and to induce

catalepsy in rats.

The D-amphetamine-induced hyperactivity in rats has the

advantage of being a predictive and reproducible model for

the selection of compounds with antipsychotic-like action

(Arnt, 1995, 2000). Consequently, it should indicate

whether SB-258741 has a general antipsychotic potential.

PPI (Braff and Geyer, 1990; Swerdlow et al., 1994) is

disrupted in patients with schizophrenia (Swerdlow et al.,

1994; Braff and Grillon, 1992), and this is modeled in the

rat by systemic administration of the indirect dopamine

(DA) agonist D-amphetamine (Druhan et al., 1998; Swer-

dlow et al., 1986; Mansbach et al., 1988; Zhang et al., 2000;

Johansson et al., 1995; Paabøl Andersen and Pouzet, 2001;

but see Davis, 1988), or the noncompetitive N-methyl-D-

aspartate (NMDA) antagonist PCP (Mansbach and Geyer,

1989; Bakshi et al., 1994). PPI disruption in rodents is

antagonised by antipsychotic drugs, and this effect is used

as an animal model of antipsychotic action. Interestingly,

while disruption of PPI by a dopamine enhancer is reversed

by both classical and the second generation of antipsy-

chotics (Swerdlow and Geyer, 1993; Swerdlow et al., 1994;

Yamada et al., 1999; Paabøl Andersen and Pouzet, 2001),

PPI disruption produced by noncompetitive NMDA antag-

onists is apparently specifically reversed by the second

generation of antipsychotics (Bakshi and Geyer, 1995;

Bakshi et al., 1994; Yamada et al., 1999). On the other

hand, a lack of effect in this model has also been claimed for

clozapine or risperidone (Johansson et al., 1994; Swerdlow

et al., 1996). Thus, we investigated the effect of SB-258741

in D-amphetamine-disrupted PPI in order to determine the

possible general antipsychotic-like effect of this compound,

and we considered of interest to test the effect of SB-258741

in PCP-disrupted PPI in order to define similarities with the

new generation of antipsychotics.

A specific advantage of the second generation of anti-

psychotics is that they have a lower potential to induce

extrapyramidal side effects (EPS) than classical antipsy-

chotics (Goldstein, 2000; Glazer, 2000), and they also

partially reduce negative symptoms such as social with-

drawal in schizophrenic patients (Blind, 1999). In order to

illustrate the capacity of compounds to reduce social with-

drawal, we studied their effect in PCP-disrupted SIT in rats

(Corbett et al., 1995; Sams-Dodd, 1995). Few antipsy-

chotics (clozapine, risperidone, and sertindole) show capa-

city to antagonise PCP-disrupted SIT (Sams-Dodd, 1997;

1998). As these three antipsychotics (Arnt and Skarsfeldt,

1998; Roth et al., 1994) have affinity for the 5-HT7 receptor,

it was consequently of interest to test whether SB-258741

would have a positive effect in this model as well.

The effect of SB-258741 was compared to risperidone in

all models tested, as this antipsychotic is the one on the

market with the highest affinity for the 5-HT7 receptor (Roth

et al., 1994). The potential interest of a 5-HT7 receptor

antagonist for treatment of schizophrenia will be discussed.

2. Materials and methods

2.1. Subjects

Rats used in all experimental paradigms except PPI were

male Wistar rats supplied by Møllegård (Denmark). Rats

used in the PPI were supplied by Charles River (Germany).

Animals were approximately 2 months old and weighed

approximately 250–300 g when used in the PPI and SIT

paradigm, but 200–250 g when used in the catalepsy,

motility, and D-amphetamine hyperactivity paradigms.

New animals were used in each paradigm. Animals were

housed four per cage (macrolon type III) for the motility,

D-amphetamine hyperactivity, and catalepsy paradigms, but

two per cage for the SIT and PPI paradigms. They were kept

in climate-controlled animal facilities (temperature at

21 ± 2 �C and relative humidity at 60 ± 10%). Animals were

housed under a normal light–dark cycle (lights on 06:00–

18:00 h) with free access to food and water, except for the

PCP-disrupted SIT model, in which animals were housed

under a reversed light–dark cycle (lights on 18:00–06:00 h).

Animals were randomly divided into treatment and drug

groups. All procedures were in strict accordance with the

Danish Committee on Care and Use of Laboratory Animals.

2.2. Materials and experimental design

2.2.1. D-Amphetamine-induced hyperactivity and motility

The test cages were macrolon type III, high model

(42.5� 26.5� 18.5 cm) equipped with four infrared light

sources and photocells 4 cm above the bottom of the cages.

The D-amphetamine-induced hyperactivity experiments

were run in normal light conditions in an undisturbed room.

The test substances were injected subcutaneously (sc) 30 min

before injection (sc) of D-amphetamine sulphate (0.5 mg/kg).

Immediately after injection of D-amphetamine, the rats were

placed individually in test cages, and locomotor activity was

measured in 15 min intervals for 2 h. The motility experi-

ments were performed in identical cages, but were located in

a dark room in order to obtain a better spontaneous activity

and, consequently, optimal conditions to highlight possible

motor inhibition after administration of test substances. The

test substances were injected subcutaneously 30 min before

measuring motility for 15 min, which means during the

exploratory phase of rats.

2.2.2. Prepulse inhibition

The apparatus consisted of four startle chambers (MOPS

2b; Metod och Produkt, Göteborg, Sweden). Each rat was

placed in a wire-mesh cage (18.5� 7� 6.5 cm) that was

suspended at one point to a piston within a stabilimeter in

such a way that this cage could move freely under the

piston. Each cage was enclosed within an individual sound-

insulated box (52� 42� 38 cm). Each movement of the

piston was converted to an analogue signal by an accel-

erometer. Signals were transferred to a computer using an
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analog-to-digital converter from National Instruments. Cus-

tom-designed StarWin software package from Ellegaard

Systems (Denmark) ran the startle-stimuli schedules and

the real-time data analysis. Acoustic noise bursts were

presented via two speakers mounted 15 cm behind the

cages. A background noise (62 or 70 dB) was maintained

throughout the session. Startle amplitude was defined as the

maximal of one hundred 1-ms stabilimeter readings col-

lected from stimulus onset. The four cages were calibrated

for equal sensitivity before starting experimental sessions.

Stimulus consisted of a burst of white noise superimposed to

the background noise with a rise time of less than 1 ms.

The PCP-disrupted PPI procedure was designed as fol-

lows. After a 10 min acclimatization with the background

sound on, eight startle pulses of 105 dB broad band burst for

30 ms were presented to test for basal startle responsiveness.

Then eight blocks of six different trial types were presented

to measure PPI. Trials were presented pseudorandomly

throughout the session, i.e., pulse alone (105 dB), prepulse

alone (77 dB), prepulse followed by pulse (three trial types:

67 + 105 dB; 72 + 105 dB; 77 + 105 dB) or no pulse. The

three different prepulses had an intensity of either 5, 10, or

15 dB above the background sound (62 dB) and a duration of

20 ms. The time interval between the prepulse offset and the

pulse onset was 60 ms. The intertrial period was constant and

lasted 15 s. The percentage PPI induced by each prepulse

intensity was calculated as: [100� (100� startle amplitude

on prepulse trial)/(startle amplitude on pulse alone trial)].

PCP (2 mg/kg) or vehicle was injected subcutaneously

10 min before starting acclimatization. Compounds to be

tested were injected 15 min before PCP administration.

The D-amphetamine-disrupted PPI design differed for

some parameters. After a 5 min acclimatization period with

the background sound on, eight startle pulses of 120-dB

broad band burst for 40 ms were presented to test for basal

startle responsiveness. The three different prepulses had an

intensity of either 4, 8, or 12 dB above the background

sound (70 dB) and a duration of 30 ms. The time interval

between the prepulse offset and the pulse onset was 100 ms.

The intertrial period was constant and lasted 15 s. D-Amphet-

amine (2 mg/kg) or vehicle was injected subcutaneously 25

min before starting acclimatization. Compounds to be

tested were injected 15 min before D-amphetamine admin-

istration.

2.2.3. Social interaction

The test was performed in an open arena (150� 100�
40 cm). The behaviour of rats was recorded by a video

camera placed above the arena and connected to an S-VHS

video recorder. Lighting in the room consisted of dark-red

diffused light. Videos were analysed off-line by the Etho-

vision programme (Noldus) in order to evaluate activity,

active SIT, and passive SIT of rats. SIT is defined as the

duration during which animals were less than 20 cm from

each other. SIT was subsequently divided into an active and

passive component for each rat based upon whether the rat

moved or was inactive (Sams-Dodd, 1996). The method

applied for this experiment is the same as the 3-day

treatment protocol described in detail elsewhere (Sams-

Dodd, 1997). To summarise shortly, 2 weeks after arrival

in our facilities, half of the rats within a drug group were

dyed with black hair colour except on the head. Rats

received a daily injection of SB-258741 and PCP (2 mg/kg)

for 3 consecutive days. Subjects were tested on the last day

of injection. SIT of rats was measured for 10 min after

placing two unfamiliar rats (one white and one dyed black)

in the open arena, on the same wall side but at opposite

corners. Both rats received the same drug treatment.

2.2.4. Catalepsy

Catalepsy was assessed on a vertical wire mesh frame

(50� 50 cm). Mesh opening was 1�1 cm and mesh

diameter was 2 mm. Animals were considered cataleptic

when they remained immobile during a period of 15 s. Rats

showing muscle relaxation were not considered cataleptic.

Rats that did not move their paws but showed active body or

head movements were also not considered as cataleptic.

Observation for catalepsy occurred once each hour during

the first 6 h and once 24 h after dosing.

2.3. Drugs

PCP hydrochloride was synthesized at H. Lundbeck and

dissolved in 0.1 M methanesulfonic acid diluted in 0.9%

NaCl. D-Amphetamine sulfate was supplied by Nomeco

(Copenhagen) and was dissolved in 0.9% NaCl. SB-

258741 was synthesised at H. Lundbeck and was dissolved

in water. Risperidone was a courtesy of Janssen Phar-

maceutical (Beerse) and was dissolved in 0.1 M HCl diluted

in 0.9% NaCl. Solution used as vehicle control was always

0.9% NaCl. All compounds were injected at volumes of

5 ml/kg. Except for PCP and D-amphetamine, all doses are

expressed in milligrams per kilogram, according to the

amount of free base.

2.4. Data analysis

2.4.1. D-Amphetamine-induced hyperactivity

Hyperactivity was analysed by a two-way repeated

measurement ANOVA consisting of a between-subjects

factor of treatment (six levels for SB-258741: VEH–

VEH; VEH–AMPH; 0.56 mg/kg AMPH; 2.3 mg/kg

AMPH; 4.6 mg/kg AMPH; 9.1 mg/kg AMPH; five levels

for risperidone: VEH–VEH; VEH–AMPH; 0.080 mg/kg

AMPH; 0.31 mg/kg AMPH; 1.3 mg/kg AMPH) and a

within-subjects factor of Time (eight bins of 15 min each).

A post hoc analysis Fisher’s PLSD was performed to

compare between groups and time intervals.

2.4.2. Motility

Motility was analysed by a one-way ANOVA consisting

of a between-subjects factor of drug (five levels for SB-
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258741: VEH; 1.1 mg/kg; 2.3 mg/kg; 4.6 mg/kg; 9.1 mg/kg;

four levels for risperidone: VEH; 0.31 mg/kg; 1.3 mg/kg;

4.9 mg/kg). A post hoc analysis Fisher’s PLSD was per-

formed to compare between groups.

2.4.3. D-Amphetamine- or PCP-disrupted PPI

The startle amplitude was analysed by a two-way

ANOVA consisting of a between-subjects factor of treat-

ment (two levels: VEH; and AMPH or PCP) and a between-

subjects factor of drug (three levels: VEH; 2.3 mg/kg;

9.1 mg/kg, for SB-258741; and VEH; 0.080 or 0.16 mg/kg;

and 0.16 or 0.31 mg/kg for risperidone). Mean percentage

PPI was analysed by three-way repeated-measures ANOVA

consisting of a between-subjects factor of treatment, a

between-subjects factor of drug, and a within-subjects factor

of three prepulse intensities. A post hoc analysis Fisher’s

PLSD was performed to compare the startle amplitude and

the mean percent PPI between groups.

2.4.4. PCP-disrupted SIT

Activity, active SIT, and passive SIT were analysed by a

two-way ANOVA consisting of a between-subjects factor of

treatment (two levels: VEH and PCP) and a between-sub-

jects factor of drug (three levels: VEH; 2.3 mg/kg; 9.1 mg/kg,

for SB-258741; and VEH; 0.16 mg/kg; 0.31 mg/kg, for

risperidone). A post hoc analysis Fisher’s PLSD was per-

formed to compare activity and SIT between groups.

2.4.5. Catalepsy

The total catalepsy score was expressed as percent of the

maximum achievable score for the individual rat and the

result presented as mean values per treatment group. Cata-

lepsy was analysed by a two-way repeated-measures

ANOVA consisting of a between-subjects factor of drug

(two levels for SB-258741: 9.1 and 18 mg/kg; three levels

for risperidone: 2.5 mg/kg; 5.0 mg/kg; 10 mg/kg), and a

within-subjects factor of Time (seven levels: 1, 2, 3, 4, 5, 6,

and 24 h).

All analyses were based on the raw data and were

calculated with the SigmaStat (2.03) software system,

except for the PPI data, which were analysed with the

StatView (5.0) software system. Preliminary results of this

study were presented as a poster at the SFN meeting 2000.

3. Results

3.1. D-Amphetamine-induced hyperactivity

3.1.1. SB-258741

D-Amphetamine-induced hyperactivity (Fig. 1) as shown

by the significant difference of activity between the VEH–

VEH- and VEH–AMPH-treated groups on the time inter-

vals 30–105 min postinjection (P’s < .01). The post hoc

analysis conducted on the significant Treatment�Time

interaction, F(35,406) = 7.40, P < .001, showed that SB-

258741 administered at 0.56 mg/kg did not reverse the

effect of D-amphetamine. SB-258741 administered at

2.3 mg/kg reversed hyperactivity induced by D-amphet-

amine up to 45 min after starting measurement (P’s < .04).

SB-258741 given at the two highest doses (4.6 and 9.1 mg/

kg) reversed hyperactivity induced by D-amphetamine up to

60 min after starting measurement (P’s < .03 and P’s < .002,

respectively). At 15 min after starting the observation, the

two highest doses of SB-258741 given in addition to

D-amphetamine reduced motor activity below that of

VEH–VEH-treated animals (P’s < .001). On the time inter-

val 120 min, the groups treated with the three highest doses

were more active than the VEH–AMPH group (P’s < .03)

and the VEH–VEH group (P’s < .003).

3.1.2. Risperidone

D-Amphetamine-induced hyperactivity (Fig. 2) as

shown by the significant difference of activity between

the VEH–VEH- and VEH–AMPH-treated groups on the

time intervals 30–105 min postinjection (P’s < .03). The

post hoc analysis conducted on the significant Treat-

ment�Time interaction, F(28,245) = 6.84, P < .001,

showed that only risperidone given at the two highest

doses (0.31 and 1.3 mg/kg) reversed hyperactivity induced

by D-amphetamine up to 45 and 60 min after starting

measurement (P’s < .001). During the first 30 min after

starting the observation, the highest dose of risperidone

(1.3 mg/kg) given in addition to D-amphetamine reduced

activity of rats below the level of VEH–VEH-treated

animals (P’s < .005).

3.2. Motility

3.2.1. SB-258741

A significant main effect of drug, F(4,27) = 7.59,

P < .001, demonstrated that SB-258741 tested at 4.6 and

9.1 mg/kg reduced motility of rats (P’s < .03) (Fig. 3).

Fig. 1. Effects of acute treatment with SB-258741 on D-amphetamine-

induced (0.5 mg/kg) hyperactivity in rats. n= 8 per Drug�Treatment

group, but n= 16 in VEH–VEH and VEH–AMPH groups. *P < .05 versus

VEH–VEH; #P< .05 versus VEH–AMPH.
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3.2.2. Risperidone

A significant main effect of drug, F(3,16) = 40.84,

P < .001, demonstrated that risperidone reduced motility of

rats (P’s < .001) on all doses tested (Fig. 4).

3.3. D-Amphetamine-disrupted PPI

3.3.1. SB-258741

As shown in Fig. 5A, there was a significant PPI effect,

as reflected in the main effect of prepulse, F(2,66) = 43.19,

P < .001. The disruptive effect of D-amphetamine,

F(1,33) = 6.15, P < .02, was not reversed by SB-258741 as

neither the main effect of drug, F(2,33) = 0.08, P > .92, nor

any of the interactions reached the significant level

(P’s > .18). As shown in Fig. 5B, startle amplitude was

not affected by the factors analysed (all P’s > .31).

3.3.2. Risperidone

As shown in Fig. 6A, there was a significant PPI effect,

as reflected in the main effect of prepulse, F(2,84) = 102.63,

P < .001. Risperidone normalised D-amphetamine-disrupted

Fig. 3. Effects of acute treatment with SB-258741 on spontaneous motility

in rats. n= 4 per drug group, but n= 16 in VEH. *P < .05 versus VEH;

***P < .001 versus VEH.

Fig. 4. Effects of acute treatment with risperidone on spontaneous motility

in rats. n= 4 per drug group, but n= 8 in VEH. ***P< .001 versus VEH.

Fig. 2. Effects of acute treatment with risperidone on D-amphetamine-

induced (0.5 mg/kg) hyperactivity in rats. n= 8 per Drug�Treatment

group. *P< .05 versus VEH–VEH; #P < .05 versus VEH–AMPH.

Fig. 5. (A) Effects of acute treatment with SB-258741 on D-amphetamine-

disrupted (2 mg/kg) PPI in rats. (B) Effects of SB-258741 on startle

amplitude. n= 6 in the VEH–AMPH, 2.3 mg/kg VEH, and 9.1 mg/kg

groups, and n= 7 in all the other groups.
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PPI, as reflected by the significant Treatment�Drug inter-

action, F(2,42) = 6.98, P < .003. Post hoc analysis indicated

a significant difference only between vehicle and D-amphet-

amine groups in those animals receiving no treatment with

risperidone (P < .001). Moreover, groups treated with ris-

peridone at both doses in addition to D-amphetamine were

significantly different from the AMPH–VEH-treated group

(P’s < .01). As shown in Fig. 6B, startle amplitude was not

affected by the factors analysed (P’s > .25).

3.4. PCP-disrupted PPI

3.4.1. SB-258741

As shown in Fig. 7A, there was a significant PPI effect,

as reflected in the main effect of prepulse, F(2,84) = 98.61,

P < .001. There was a significant disruptive effect of PCP

reflected by the main effect of treatment, F(1,42) = 17.52,

P < .001. SB-258741 enhanced PPI, as reflected by a signifi-

cant effect of drug, F(2,42) = 6.49, P < .005. According to

the double significant effect of treatment and drug, a Fisher

PLSD post hoc test showed that there was a significant

difference between vehicle and PCP groups in the animal

groups not treated with SB-258741 (P < .02) or treated with

2.3 mg/kg SB-258741 (P < .001). The animal group treated

with SB-258741 at 9.1 mg/kg in addition to PCP was

significantly different from the VEH–PCP-treated group

(P < .003). As shown in Fig. 7B, a significant Treatment�
Drug interaction, F(2,42) = 3.93, P < .03, completed with a

Fisher PLSD post hoc test confirmed that both doses of SB-

258741 (P < .03) antagonised PCP-reduced startle ampli-

tude (P= .053) in this experiment. Consequently, we cannot

exclude the possibility that the effect of SB-258741 on the

PCP-disrupted PPI model is simply a consequence of SB-

258741 reversing PCP-reduced startle amplitude of rats.

3.4.2. Risperidone

As shown in Fig. 8A, there was a significant PPI effect,

as reflected in the main effect of prepulse, F(2,84) = 66.96,

P < .001. There was a significant disruptive effect of PCP,

F(1,42) = 51.29, P < .001, which was dose-dependently

reversed by risperidone as reflected by the significant

Treatment�Drug interaction, F(2,42) = 3.80, P < .04. Post

Fig. 6. (A) Effects of acute treatment with risperidone on D-amphetamine-

disrupted (2 mg/kg) PPI in rats. (B) Effects of risperidone on startle

amplitude. n= 8 per Drug�Treatment group. ***P < .001. ##P < .01

versus VEH–AMPH; ###P < .001 versus VEH–AMPH.

Fig. 7. (A) Effects of acute treatment with SB-258741 on PCP (2 mg/kg)-

disrupted PPI in rats. (B) Effects of SB-258741 on startle amplitude. n= 8

per Drug�Treatment group. *P < .05; ***P < .001. #P < .05 versus

VEH–PCP; ##P< .01 versus VEH–PCP.
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hoc analysis indicated a significant difference between

vehicle and PCP groups in the three treatment groups

(P’s < .003). However, this analysis showed that those

groups treated with risperidone at both doses in addition

to PCP were significantly different from the PCP–VEH-

treated group (P’s < .04). As shown in Fig. 8B, startle

amplitude was not affected by factors analysed (all

P’s > .30).

3.5. PCP-disrupted SIT

3.5.1. SB-258741

3.5.1.1. Hyperactivity. A significant Drug�Treatment

interaction, F(2,66) = 8.66, P < .001, showed that the various

doses of SB-258741 interfered differently with PCP on

activity (Fig. 9A). At the lowest dose (2.3 mg/kg), SB-

258741 decreased activity similarly in the vehicle- and

PCP-treated groups. At the highest dose (9.1 mg/kg), reduc-

tion of spontaneous activity induced by SB-258741 in addi-

tion to vehicle was much more pronounced than in the PCP-

treated group.

3.5.1.2. Active SIT. As shown in Fig. 9B, PCP disrupted

active SIT of rats, F(1,66) = 88.14, P < .001, and SB-

258741 reduced the level of active SIT of both vehicle-

Fig. 8. (A) Effects of acute treatment with risperidone on PCP (2 mg/kg)-

disrupted PPI in rats. (B) Effects of risperidone on startle amplitude. n= 8

per Drug�Treatment group. **P < .01; ***P< .001. #P< .05 versus

VEH–PCP; ##P< .01 versus VEH–PCP.

Fig. 9. (A) Effects of subchronic (3 days) treatment with SB-258741 on

PCP (2 mg/kg)-induced hyperactivity in rats. (B) Effects of subchronic

(3 days) treatment with SB-258741 on PCP-disrupted SIT in rats. n= 6

pairs of rats per Drug�Treatment group. Symbols: (6) SB-258741 in

combination with vehicle; (5) SB-258741 in combination with PCP. Open

symbols indicate active SIT, and dark symbols indicate passive SIT

*P < .05 versus the respective vehicle-treated group. #P< .05 versus

VEH–VEH or VEH–PCP.
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and PCP-treated rats, F(2,66) = 40.68, P < .001. A signifi-

cant Drug�Treatment interaction, F(2,66) = 20.46,

P < .001, as shown by a post hoc analysis demonstrated

that 2.3 mg/kg of SB-258741 reduced the level of active

SIT to the same extent in the vehicle- and PCP-treated

groups. At 9.1 mg/kg, SB-258741 strongly reduced the

level of active SIT in the vehicle-treated group in com-

parison to the PCP-treated group. This reduction of active

SIT appears directly correlated to the reduction of activity

described previously.

3.5.1.3. Passive SIT. As shown in Fig. 9B, SB-258741

given at 9.1 mg/kg induced marginal passive SIT,

F(2,66) = 3.80, P < .05, which is also related to the reduction

of spontaneous activity previously observed at this dose.

3.5.2. Risperidone

3.5.2.1. Hyperactivity. As shown in Fig. 10A, PCP

induced hyperactivity in rats, F(1,66) = 22.48, P < .001,

and risperidone reduced the activity of these rats,

F(2,66) = 80.04, P < .001. A significant Drug�Treatment

interaction, F(2,66) = 8.66, P < .001, completed by a post

hoc analysis showed that the lowest dose (0.16 mg/kg) of

risperidone normalised hyperactivity in the PCP-treated

groups and slightly reduced the spontaneous activity of rats.

However, there was still a significant difference between the

activity level of the VEH- and PCP-treated groups at this

dose of risperidone. At the highest dose (0.31 mg/kg), the

risperidone-induced decrease in activity was much more

pronounced in the PCP-treated group than in the vehicle-

treated group, with the consequence that both groups

reached the same low level of activity.

3.5.2.2. Active SIT. As shown in Fig. 10B, PCP disrupted

active SIT of rats, F(1,66) = 303.33, P < .001, and risper-

idone increased the level of active SIT of rats as demon-

strated by a main effect of drug, F(2,66) = 3.99, P < .05. A

significant Drug�Treatment interaction, F(2,66) = 6.73,

P < .005, completed by a post hoc analysis demonstrated

that at 0.16 mg/kg, risperidone did not reverse PCP-dis-

rupted SIT. At 0.31 mg/kg, risperidone partially reversed

this disruptive effect of PCP, without significant modifica-

tion of the spontaneous SIT of rats.

3.5.2.3. Passive SIT. As shown in Fig. 10B, 0.31 mg/kg

induced passive SIT, F(2,66) = 11.29, P < .001, which is

correlated to the increase in active SIT previously

described at this dose, and probably to the reduction of

activity as well.Fig. 10. (A) Effects of subchronic (3 days) treatment with risperidone on

PCP (2 mg/kg)-induced hyperactivity in rats. (B) Effects of subchronic

(3 days) treatment with risperidone on PCP-disrupted SIT in rats. n= 6

pairs of rats per Drug�Treatment group. Symbols: (6) risperidone in

combination with vehicle; (5) risperidone in combination with PCP. Open

symbols indicate active SIT, and dark symbols indicate passive SIT

*P < .05 versus the respective vehicle-treated group. #P < .05 versus

VEH–VEH or VEH–PCP.

Fig. 11. Cataleptogenic effect of SB-258741 (dash line) and risperidone

(full line). n= 4 per drug group.
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3.6. Catalepsy

3.6.1. SB-258741

As shown in Fig. 11, SB-258741 did not induce any

catalepsy for doses up to 18 mg/kg and up to 24 h after

administration (P’s = 1).

3.6.2. Risperidone

As shown in Fig. 11, risperidone induced dose-dependent

catalepsy, F(2,9) = 6.84, P < .02, for the two highest doses.

4. Discussion

This is the first attempt to study the potential antipsy-

chotic activity of a selective 5-HT7 receptor antagonist.

SB-258741 is 200-fold selective over other 5-HT or

dopaminergic receptors (see compound ‘‘13’’ in Lovell et

al., 2000) and has significant effects in two models known

to be predictive of antipsychotic action: D-amphetamine-

induced hyperactivity in rats (Arnt, 1995, 2000) and PCP-

disrupted PPI (Mansbach and Geyer, 1989; Bakshi and

Geyer, 1995; Bakshi et al., 1994; Yamada et al., 1999).

However, in both cases, this effect might be a consequence

of a modification of motricity induced by SB-258741.

SB-258741 dose-dependently antagonised D-amphet-

amine-induced hyperactivity but also reduced spontaneous

activity of rats at the same doses (4.6 and 9.1 mg/kg). It is

only at 2.3 mg/kg that SB-258741 antagonised specifically

D-amphetamine-induced hyperactivity. It is also noted that

rats treated with SB-258741 at this mid-dose were more

active than VEH–AMPH rats when the effect of

D-amphetamine elapsed. Thus, SB-258741 seems to have

a dual effect on activity of rats. At high doses, it reduced

activity of rats during the exploratory part of the test, but

at lower doses, it keeps rats more active than VEH–

AMPH-treated rats. This observation is difficult to explain,

as we cannot conclude whether this effect is specific to

SB-258741 or to a possible metabolite, due to a real

pharmacodynamic effect of SB-258741 or to an effect on

the pharmacokinetics of D-amphetamine. In comparison,

risperidone dose-dependently reversed D-amphetamine-

induced hyperactivity without inducing such hyperactivity

at the end of the session. At the two highest doses

risperidone also reduced activity of rats during the explor-

atory period, which questions the validity of the results

obtained versus D-amphetamine in this model. In a similar

fashion to SB-258741, risperidone significantly reduced

the spontaneous activity of rats in the motility test when

tested with doses that were effective in the D-amphet-

amine-induced hyperactivity model. Consequently, the

effect of SB-258741 in this model is inconclusive as this

compound antagonised D-amphetamine at doses that were

similar to those inhibiting spontaneous activity of rats.

However, risperidone, an antipsychotic with demonstrated

clinical effect, suppresses locomotor activity at the same

doses that were effective in the D-amphetamine-induced

hyperactivity model.

SB-258741 also dose-dependently normalised the effect

of PCP in PCP-disrupted PPI in rats. However, on both

doses tested, SB-258741 also normalised the reduction of

startle amplitude induced by PCP. Thus, the beneficial effect

of SB-258741 in PCP-disrupted PPI is certainly not inde-

pendent of its effect on the startle amplitude of rats in the

PCP-treated groups. This means that the positive effect of

SB-258741 in this model is probably not related to a sensory

gating process (Swerdlow et al., 2000). Consequently, the

beneficial effect of SB-258741 in the PCP-disrupted PPI

model should be considered carefully, and it seems difficult

to predict an antipsychotic action for SB-258741 in this

model as well. Contrary to SB-258741, risperidone antagon-

ised PCP-disrupted PPI without effect on startle amplitude

and under condition at which PCP did not affect startle

amplitude as well. This result with risperidone confirms

another previous report (Yamada et al., 1999) but is contrary

to another publication showing that risperidone was not

effective in this model (Swerdlow et al., 1996). It shows that

like clozapine (Bakshi et al., 1994; Yamada et al., 1999;

Johansson et al., 1994), the antipsychotic-like effect of

risperidone in this model is variable between laboratories.

On D-amphetamine-disrupted PPI, a model predictive

of antipsychotic action (Swerdlow and Geyer, 1993;

Paabøl Andersen and Pouzet, 2001), SB-258741 did not

reverse the effect of D-amphetamine. This effect is oppos-

ite to the one obtained with risperidone but is consistent

with the lack of clear effect obtained with SB-258741 on

both the D-amphetamine-induced hyperactivity and PCP-

disrupted PPI models. Thus, according to results obtained

in these three models, the probability that SB-258741 can,

on its own, treat positive symptoms in schizophrenic

patients seems weak.

With respect to the model indicative of effect on negative

symptoms of schizophrenia, i.e., PCP-disrupted SIT in rats

(Sams-Dodd, 1997, 1998), SB-258741 did not show any

beneficial effect, as it enhanced the disruptive effect of PCP

on active SIT instead of reducing it. Contrary to the motility

test, all doses tested for both SB-258741 and risperidone

reduced spontaneous activity. This difference can certainly

be explained by different experimental conditions (acute

versus 3 days of treatment; macrolon type III cages versus

large arena as boxes for testing). However, only risperidone

antagonised PCP-disrupted SIT, although passive SIT was

increased to the same extent. Consequently, specific ant-

agonism of the 5-HT7 receptor does not seem to explain the

beneficial effect of risperidone observed in this study and

previously reported for this model (Sams-Dodd, 1997).

However, the possibility that a combination of the effect

of 5-HT7 receptor antagonism plus the dopaminergic D2

and/or 5-HT2A receptor antagonism of risperidone has a

positive effect in this model cannot be excluded.

As regards side effects, SB-258741 tested at 18 mg/kg

did not induce catalepsy. As this model is a predictor of
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EPS (Arnt, 1982), we can exclude the possibility that

antagonism on the 5-HT7 receptor would induce EPS. This

lack of cataleptogenic effect of SB-258741 is in contrast to

the induction of catalepsy obtained with risperidone in this

study. As previously suggested, we cannot exclude the

possibility that a combination of antagonism on the 5-HT7

receptor plus the dopaminergic D2 and/or 5-HT2A receptor

would change the pattern of results obtained both in

models predictive of antipsychotic action and EPS. How-

ever, a preliminary study conducted in our laboratory,

testing SB-258741 in combination with the dopaminergic

D2 receptor antagonist remoxipride, or the 5-HT2A receptor

antagonist MDL-100151 in another model predictive of

antipsychotic action, PCP-induced hyperactivity in mice

(Gleason and Shannon, 1997), did not show any enhance-

ment of the beneficial effect of these two compounds

(unpublished data).

This study demonstrated that we should not expect to

obtain an antipsychotic action with SB-258741. According

to the specificity of this compound (see compound ‘‘13’’ in

Lovell et al., 2000), it seems doubtful that other specific

5-HT7 receptor antagonists would have any antipsychotic

action on their own as well. On the other hand, a lack of

information about the pharmacokinetics of this compound

does not permit exclusion of the possibility that its central

effect is weak due to a poor brain penetrability. However,

two arguments go against this hypothesis. First, we

described in this study that SB-258741 antagonised the

effect of PCP on startle amplitude of rats but did not affect

the spontaneous startle amplitude on its own. This suggests

an effect of this compound on central structures involved in

regulation of startle. Second, SB-258741 and SB-269970

have very similar chemical structures (Lovell et al., 2000),

with similar biological activities, and SB-269970 is known

to have a good brain penetrability (Hagan et al., 2000).
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